

COURSE DESCRIPTION FORM

COVER PAGE

2022/2023-2

Course Code & Name	CE381 STRUCTURAL ANALYSIS
--------------------	---------------------------

Course Schedule	Monday 14.00-15.50; Thursday 13.00-15.50
Room	B0425
Phone E-mail	Asst. Prof. Dr. Özden Saygılı 0216-578 00 00 / 1537 ozden.saygili@yeditepe.edu.tr Monday 11:00-13:00 Thursday 10:00-12:00
Assistant's Name Phone E-mail	0216-578 00 00 / 3227
Midterm Dates	
Additional Information	MIDTERM 20% ASSIGNMENT (8) 10% FINAL 70% MIDTERM • Statically determinate systems FINAL • Statically indeterminate systems Force Method Slope Deflection Method Moment Distribution Method To successfully complete the course, it is imperative to obtain a minimum score of 50 in the final examination.

COURSE INFORMATON					
Course Code CE 381 Course Title STRUCTURAL ANALYSIS					
Semester	Credits	ECTS	C +P + L Hour	Prerequisites	
5	4	5	3+2+0	CE 236: Mechanics of Materials	

Language of Instruction		Course Level	Course Type	
English		Bachelor of Science (First Cycle Courses)	Core	
Course Coordinator	Asst. Prof.	Dr. Özden Saygılı		
Instructors	Asst. Prof. Dr. Özden Saygılı			
Assistants	Emin Gazi Kaşıkçı			
Goals	The goal of this course is to study the methods for analysis of statically determinate and indeterminate systems under various loadings.			
Content	Analysis of statically determinate systems Response of statically determinate systems under moving loads Analysis of statically indeterminate systems using Force Method. Analysis of statically indeterminate systems for temperature gradient and support settlements using Force Method. Analysis of statically indeterminate systems using Displacement Methods of Analysis (Slope-Deflection Method and Moment Distribution Method)			
Contribution of the Course to the Professional Education	The student who takes this course learns the methods required for the analysis of statically determinate and indeterminate systems under various loadings.			

Course Learning Outcomes	Detailed Program Outcomes	Teaching Methods	Assessment Methods
Ability to draw internal force diagrams of statically determinate systems	1a, 1b, 2a, 6c	1, 2, 3	А, В
Ability to draw internal force diagrams of statically determinate systems under moving loads	1a, 1b, 2a, 6c	1, 2, 3	В
Ability to draw internal force diagrams of statically indeterminate systems using Force Method	1a, 1b, 2a, 2b, 6c	1, 2, 3	А, В
Ability to draw internal force diagrams of statically indeterminate systems for temperature gradient and support settlements using Force Method.	1a, 1b, 2a, 2b, 6c	1, 2, 3	В
Ability to draw internal force diagrams of statically indeterminate systems using Slope-Deflection Method.	1a, 1b, 2a, 2b, 6c	1, 2, 3	А, В

YEDITEPE UNIVERSITY FACULTY OF ENGINEERING

COURSE DESCRIPTION FORM

Ability to draw internal force diagrams of statically indeterminate systems using Moment Distribution Method

1a, 1b, 2a, 2b, 6c

1, 2, 3

A, B

Teaching Methods:	1: Lecture, 2: Problem solving by instructor, 3: Problem solving assignment
Assessment Methods:	A: Written exam, B: Homework

COURSE CONTENT				
Week	Topics	Study Materials		
1	Drawing internal force diagrams of statically determinate systems	Lecture Notes and Textbook		
2	Drawing internal force diagrams of statically determinate systems	Lecture Notes and Textbook		
3	Drawing internal force diagrams of Gerber systems	Lecture Notes and Textbook		
4	Constructing influence lines for statically determinate systems	Lecture Notes and Textbook		
5	Introduction to statically indeterminate systems-advantages- disadvantages, methods of analysis MIDTERM I	Lecture Notes and Textbook		
6	Drawing internal force diagrams of statically indeterminate systems using Force Method	Lecture Notes and Textbook		
7	Drawing internal force diagrams of statically indeterminate systems using Force Method	Lecture Notes and Textbook		
8	Drawing internal force diagrams of statically indeterminate systems for temperature gradient using Force Method.	Lecture Notes and Textbook		
9	Drawing internal force diagrams of statically indeterminate systems for support settlements using Force Method.	Lecture Notes and Textbook		
10	Drawing internal force diagrams of statically ideterminate systems using Force Method MIDTERM II	Lecture Notes and Textbook		
11	Drawing internal force diagrams of statically indeterminate systems using Slope-Deflection Method	Lecture Notes and Textbook		
12	Drawing internal force diagrams of statically indeterminate systems using Slope-Deflection Method	Lecture Notes and Textbook		
13	Drawing internal force diagrams of statically indeterminate systems using Moment Distribution Method	Lecture Notes and Textbook		
14	Drawing internal force diagrams of statically indeterminate systems using Moment Distribution Method	Lecture Notes and Textbook		

RECOMMENDED SOURCES			
Textbook	These are the notes that the students wrote during the lectures.		
Additional Resources	✓ İzostatik Hiperstatik Sistemler, Yapı Statiği Çözümlü Problemler, Konuralp Girgin, M. Günhan Aksoylu, Yavuz Durgun, Kutlu Darılmaz. Birsen Yayınevi, 2015 ✓ Hiperstatik Sistemler, Yapı Statiği Çözümlü Problemler, Konuralp Girgin, M. Günhan Aksoylu, Kutlu Darılmaz. Birsen Yayınevi. 2017. ✓ Structural Analysis, Hibbeler, R.C. ISBN-13: 978-0-13-257053-4		

MATERIAL SHARING		
Documents		
Assignments	Assignments are returned to students after they are graded.	
Exams	Exams questions are solved if demanded.	

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Midterm I (20%)	1	34		
Midterm II (30%)	1	50		
Assignments (10%)	8	16		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60		
Total		100		

COURSE CATEGORY Field Course	
------------------------------	--

COURSE'S CONTRIBUTION TO PROGRAM OUTCOMES check Nο Program Learning Outcomes $\sqrt{}$ $\sqrt{}$ Adequate knowledge in mathematics, science and engineering subjects pertaining 1a to the relevant discipline, Ability to use theoretical and applied knowledge in these areas in complex 1b engineering problems. Ability to identify, formulate, and solve complex engineering problems, 2a Ability to select and apply proper analysis and modeling methods for this purpose. 2b Ability to design a complex system, process, device or product under realistic За constraints and conditions, in such a way as to meet the desired result, Ability to apply modern design methods for this purpose. 3b Ability to devise, select and use modern techniques and tools needed for 4a analyzing and solving complex problems encountered in engineering practice. 4b Ability to employ information technologies effectively. Ability to design experiments for investigating complex engineering problems or 5a discipline specific research questions, Ability to conduct experiments, gather data, analyze and interpret results for 5b investigating complex engineering problems or discipline specific research Ability to work efficiently in intra-disciplinary teams, 6a **6b** Ability to work efficiently in multi-disciplinary teams, **6c** Ability to work individually. 7a Ability to communicate effectively in Turkish, both orally and in writing, Knowledge of a minimum of one foreign language, 7b Ability to write effective reports and comprehend written reports, **7**c prepare design and production reports, Ability to make effective presentations, 7d Ability to give and receive clear and intelligible instructions. 7e Recognition of the need for lifelong learning, ability to access information, ability 8a to follow developments in science and technology, Ability to continue to educate him/herself. 8b Consciousness to behave according to ethical principles and professional and 9a ethical responsibility. **9b** Knowledge on standards used in engineering practice. Knowledge about business life practices such as project management, risk 10a management, change management. **10b** Awareness in entrepreneurship and innovation. **10c** Knowledge about sustainable development. Knowledge about the global and social effects of engineering practices on health, 11a environment, and safety, Knowledge about contemporary issues of the century reflected into the field of 11b engineering. **11c** Awareness of the legal consequences of engineering solutions. 12 Knowledge about project award mechanisms and tendering procedures. **13** Knowledge about the interaction of designers and constructors.

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION					
Activities	Quantity	Duration (Hour)	Total Workload (Hour)		
Course Duration	14	5	70		
Hours for off-the-classroom study (Pre-study, practice)	14	3	42		
Midterm	2	2	4		
Assignment	8	2	16		
Final	1	2	2		
Total Work Load			134		
Total Work Load / 25 (h)			5.36		
ECTS Credit of the Course			5		

Prepared by: Asst. Prof. Dr. Özden Saygılı Preparation date: 01/02/2023